Как перевести дробь в десятичную систему счисления

Как перевести дробь в десятичную систему счисления

Наименование УО: МБОУ СОШ с. Захаровка

Учитель: Вавин Александр Викторович

Предмет: Информатика и ИКТ

Класс: 11А класс

Тема урока: Перевод дробных чисел из одной СС в другую

Научиться переводить дробные числа из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную;

Научиться оформлять алгоритм перевода дробных чисел из десятичной системы счисления в любую другую;

Отработать полученные знания на практике;

Развивать мышление, логику, память.

Тип урока: Изучение нового материала.

I. Организационный момент: приветствие. (2 мин)

Проверка готовности учащихся к уроку, отметка отсутствующих.

II. Постановка темы и целей урока.(1 мин)

III. Фронтальный опрос. (3 мин)

Алгоритм перевода чисел из десятичной системы счисления в любую другую?

IV. Решение примеров на повторение (5 минут)

Переведите числа 19,44, 129 из десятичной системы счисления в двоичную и шестнадцатеричную.

V. Объяснение нового материала. (15 мин)

Алгоритм перевода дробных чисел из десятичной системы счисления в любую другую :

Можно сформулировать алгоритм перевода правильной дроби с основанием p в дробь с основанием q:

1. Основание новой системы счисления выразить цифрами исходной системы счисления и все последующие действия производить в исходной системе счисления.

2. Последовательно умножать данное число и получаемые дробные части произведений на основание новой системы до тех пор, пока дробная часть произведения не станет равной нулю или будет достигнута требуемая точность представления числа.

3. Полученные целые части произведений, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления.

4. Составить дробную часть числа в новой системе счисления, начиная с целой части первого произведения.

Пример 1. Перевести число 0,6562510 в восьмеричную систему счисления.

Перевод дробных чисел из одной системы счисления в другую

Читайте также:  Css блок по центру по вертикали

После того, как я сделал несколько калькуляторов для перевода между разными системами счисления — вот список от первой до последней версии, от самого простого к сложному: Перевод числа в другие системы счисления, Перевод из десятичной системы счисления, Перевод из одной системы счисления в другую — в комментариях стали периодически спрашивать — а что же, мол, дробные числа, как же их переводить? И когда спросили больше трех раз, я таки решил изучить этот вопрос.

Результатом стал калькулятор, который вы видите ниже, он умеет переводить и дробные числа в том числе. Как водится, для любознательных под калькулятором немного теории.

Перевод дробных чисел из одной системы счисления в другую

Теперь теория. Я, честно говоря, думал, что вопрос довольно сложный, но при ближайшем рассмотрении все оказалось проще простого. Надо было только держать в голове тот факт, что речь идет о позиционных системах счисления.
В чем тут суть? Рассмотрим на примере десятичного числа 6.125. Это дробное число в десятичной системе счисления представляется так:

Все просто, не так ли? Та же самая простота сохраняется и при записи дробного числа в любой другой системе счисления. Возьмем, например, горячо любимую каждым программистом двоичную систему и число, например, 110.001. Эта запись есть не что иное как

Да-да, число для примера было выбрано не просто так. То есть, 110.001 в двоичной системе есть 6.125 в десятичной. Принцип, я думаю, ясен.

Есть только одно но — все-таки из-за того, что здесь участвую дроби с разными знаменателями, не всегда одно и тоже число можно одинаково точно выразить в разных системах счисления. Что я имею в виду?

Читайте также:  Как научиться выводить формулы по физике

Возьмем, например, число . Отлично смотрится в десятичной системе счисления. Но вот если попробовать получить запись этого числа в двоичной системе счисления — будут проблемы. Попробуем, пока не устанем

Продолжать можно еще довольно долго, но уже сейчас видно, что 0.8 в десятичной системе это 0.11001100. (дальше очень много цифр) в двоичной. Если честно, то это периодическое число с перидом 1100, так что мы никогда не сможем выразить его точно в двоичной системе счисления. 110011001100. будет продолжаться до бесконечности.

Поэтому перевод дробного числа из одной системы счисления в другую чаще всего дает погрешность. Погрешность эта зависит от того, сколько разрядов мы используем для записи дробной части переведенного числа. Возьмем пример с числом 0.8 и используем для записи его двоичного представления шесть разрядов после запятой — 0.110011. Полученное число вовсе не 0.8, а 0.796875, разница при этом составляет 0.003125. Это и есть наша погрешность перевода десятичного числа 0.8 в двоичный вид при использовании шести разрядов после запятой.

Вес крайнего правого разряда (самого младшего разряда) называется разрешением (resolution) или точностью (precision), и определяет наименьшее неравное нулю число, которое может быть представлено данным числом разрядов. Для нашего примера это . При этом максимально возможная погрешность представления числа, как нетрудно сообразить, не превышает половины этого веса, или 0.0078125. Так что для 0.8 мы имеем еще и не самую плохую погрешность.

Перевод дробных чисел в десятичную систему счисления

Для перевода дробной части числа необходимо разделить разряд числа на соответствующую ему степень разряда
111 = 2 -1 *1 + 2 -2 *1 + 2 -3 *1 = 0.875
11101,1112 = 29,875

б) 371,058
Для перевода целой части необходимо умножить разряд числа на соответствующую ему степень разряда.
371 = 8 2 *3 + 8 1 *7 + 8 0 *1 = 192 + 56 + 1 = 249

Читайте также:  Как вернуть инстаграм на айфоне

Для перевода дробной части необходимо разделить разряд числа на соответствующую ему степень разряда:
05 = 8 -1 *0 + 8 -2 *5 = 0.078125 = 0.078
371,058 = 249,078

в) 1B9,5816
Для перевода целой части необходимо умножить разряд числа на соответствующую ему степень разряда.
1B9 = 16 2 *1 + 16 1 *11 + 16 0 *9 = 256 + 176 + 9 = 441

Для перевода дробной части необходимо разделить разряд числа на соответствующую ему степень разряда:
58 = 16 -1 *5 + 16 -2 *8 = 0.34375 = 0.344
1B9,5816 = 441,344

Обратите внимание, что при переводе обратно в десятичную систему счисления, дробные числа могут не совпадать. Это объясняется потерей точности при переводе из 10-ой системы. Каким образом исправить данную ситуацию? Ответ: увеличить число разрядов при переводе из десятичной системы (т.е. повысить точность).

Ссылка на основную публикацию
Как обновить системные приложения на андроид
Если вы только осваиваете Android и хотите создать свою собственную прошивку либо просто встроить приложение в Android, то прошу под...
Как исправить дату на справке
В нашей нелегкой жизни мы иногда допускаем ошибки, от которых желаем избавиться. Если поступки в жизни, о которых мы жалеем...
Как исправить драйвера windows 7
Как установить драйвера на Windows 7 принудительно. Данный вид установки драйверов практически всегда помогает в том случае, когда драйвер для...
Как обновить смартфон до андроид 9
Обновление операционной системы Андроид – не только рекомендуемый, но и необходимый процесс для стабильной работы смартфона. Для владельца телефона –...

Как перевести дробь в десятичную систему счисления

Наименование УО: МБОУ СОШ с. Захаровка

Учитель: Вавин Александр Викторович

Предмет: Информатика и ИКТ

Класс: 11А класс

Тема урока: Перевод дробных чисел из одной СС в другую

Научиться переводить дробные числа из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную;

Научиться оформлять алгоритм перевода дробных чисел из десятичной системы счисления в любую другую;

Отработать полученные знания на практике;

Развивать мышление, логику, память.

Тип урока: Изучение нового материала.

I. Организационный момент: приветствие. (2 мин)

Проверка готовности учащихся к уроку, отметка отсутствующих.

II. Постановка темы и целей урока.(1 мин)

III. Фронтальный опрос. (3 мин)

Алгоритм перевода чисел из десятичной системы счисления в любую другую?

IV. Решение примеров на повторение (5 минут)

Переведите числа 19,44, 129 из десятичной системы счисления в двоичную и шестнадцатеричную.

V. Объяснение нового материала. (15 мин)

Алгоритм перевода дробных чисел из десятичной системы счисления в любую другую :

Можно сформулировать алгоритм перевода правильной дроби с основанием p в дробь с основанием q:

1. Основание новой системы счисления выразить цифрами исходной системы счисления и все последующие действия производить в исходной системе счисления.

2. Последовательно умножать данное число и получаемые дробные части произведений на основание новой системы до тех пор, пока дробная часть произведения не станет равной нулю или будет достигнута требуемая точность представления числа.

3. Полученные целые части произведений, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления.

4. Составить дробную часть числа в новой системе счисления, начиная с целой части первого произведения.

Пример 1. Перевести число 0,6562510 в восьмеричную систему счисления.

Перевод дробных чисел из одной системы счисления в другую

Читайте также:  Как добавить учетную запись в outlook 2007

После того, как я сделал несколько калькуляторов для перевода между разными системами счисления — вот список от первой до последней версии, от самого простого к сложному: Перевод числа в другие системы счисления, Перевод из десятичной системы счисления, Перевод из одной системы счисления в другую — в комментариях стали периодически спрашивать — а что же, мол, дробные числа, как же их переводить? И когда спросили больше трех раз, я таки решил изучить этот вопрос.

Результатом стал калькулятор, который вы видите ниже, он умеет переводить и дробные числа в том числе. Как водится, для любознательных под калькулятором немного теории.

Перевод дробных чисел из одной системы счисления в другую

Теперь теория. Я, честно говоря, думал, что вопрос довольно сложный, но при ближайшем рассмотрении все оказалось проще простого. Надо было только держать в голове тот факт, что речь идет о позиционных системах счисления.
В чем тут суть? Рассмотрим на примере десятичного числа 6.125. Это дробное число в десятичной системе счисления представляется так:

Все просто, не так ли? Та же самая простота сохраняется и при записи дробного числа в любой другой системе счисления. Возьмем, например, горячо любимую каждым программистом двоичную систему и число, например, 110.001. Эта запись есть не что иное как

Да-да, число для примера было выбрано не просто так. То есть, 110.001 в двоичной системе есть 6.125 в десятичной. Принцип, я думаю, ясен.

Есть только одно но — все-таки из-за того, что здесь участвую дроби с разными знаменателями, не всегда одно и тоже число можно одинаково точно выразить в разных системах счисления. Что я имею в виду?

Читайте также:  Как вернуть инстаграм на айфоне

Возьмем, например, число . Отлично смотрится в десятичной системе счисления. Но вот если попробовать получить запись этого числа в двоичной системе счисления — будут проблемы. Попробуем, пока не устанем

Продолжать можно еще довольно долго, но уже сейчас видно, что 0.8 в десятичной системе это 0.11001100. (дальше очень много цифр) в двоичной. Если честно, то это периодическое число с перидом 1100, так что мы никогда не сможем выразить его точно в двоичной системе счисления. 110011001100. будет продолжаться до бесконечности.

Поэтому перевод дробного числа из одной системы счисления в другую чаще всего дает погрешность. Погрешность эта зависит от того, сколько разрядов мы используем для записи дробной части переведенного числа. Возьмем пример с числом 0.8 и используем для записи его двоичного представления шесть разрядов после запятой — 0.110011. Полученное число вовсе не 0.8, а 0.796875, разница при этом составляет 0.003125. Это и есть наша погрешность перевода десятичного числа 0.8 в двоичный вид при использовании шести разрядов после запятой.

Вес крайнего правого разряда (самого младшего разряда) называется разрешением (resolution) или точностью (precision), и определяет наименьшее неравное нулю число, которое может быть представлено данным числом разрядов. Для нашего примера это . При этом максимально возможная погрешность представления числа, как нетрудно сообразить, не превышает половины этого веса, или 0.0078125. Так что для 0.8 мы имеем еще и не самую плохую погрешность.

Перевод дробных чисел в десятичную систему счисления

Для перевода дробной части числа необходимо разделить разряд числа на соответствующую ему степень разряда
111 = 2 -1 *1 + 2 -2 *1 + 2 -3 *1 = 0.875
11101,1112 = 29,875

б) 371,058
Для перевода целой части необходимо умножить разряд числа на соответствующую ему степень разряда.
371 = 8 2 *3 + 8 1 *7 + 8 0 *1 = 192 + 56 + 1 = 249

Читайте также:  Powerman smart 1000 inv отзывы

Для перевода дробной части необходимо разделить разряд числа на соответствующую ему степень разряда:
05 = 8 -1 *0 + 8 -2 *5 = 0.078125 = 0.078
371,058 = 249,078

в) 1B9,5816
Для перевода целой части необходимо умножить разряд числа на соответствующую ему степень разряда.
1B9 = 16 2 *1 + 16 1 *11 + 16 0 *9 = 256 + 176 + 9 = 441

Для перевода дробной части необходимо разделить разряд числа на соответствующую ему степень разряда:
58 = 16 -1 *5 + 16 -2 *8 = 0.34375 = 0.344
1B9,5816 = 441,344

Обратите внимание, что при переводе обратно в десятичную систему счисления, дробные числа могут не совпадать. Это объясняется потерей точности при переводе из 10-ой системы. Каким образом исправить данную ситуацию? Ответ: увеличить число разрядов при переводе из десятичной системы (т.е. повысить точность).

Ссылка на основную публикацию
Как обновить системные приложения на андроид
Если вы только осваиваете Android и хотите создать свою собственную прошивку либо просто встроить приложение в Android, то прошу под...
Как исправить дату на справке
В нашей нелегкой жизни мы иногда допускаем ошибки, от которых желаем избавиться. Если поступки в жизни, о которых мы жалеем...
Как исправить драйвера windows 7
Как установить драйвера на Windows 7 принудительно. Данный вид установки драйверов практически всегда помогает в том случае, когда драйвер для...
Как обновить смартфон до андроид 9
Обновление операционной системы Андроид – не только рекомендуемый, но и необходимый процесс для стабильной работы смартфона. Для владельца телефона –...
Adblock detector